If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+53x+9=0
a = 40; b = 53; c = +9;
Δ = b2-4ac
Δ = 532-4·40·9
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(53)-37}{2*40}=\frac{-90}{80} =-1+1/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(53)+37}{2*40}=\frac{-16}{80} =-1/5 $
| W=2.8l=3.4 | | 1.28=(x-55)/16 | | -2b–12=22 | | 0.28x=100 | | 91+7m=175 | | 1/5x+1/7x=24 | | -1/2(x+3)=-2-x | | 19n-65=182 | | -8+5=9y+1 | | -x/5+2=-2 | | -4(6+6v)=-2v+20 | | 3x/8+10=19 | | -2c-7-4c=12 | | 0.3(4z+6)+4.2=0.5(4z-4) | | 4t+4+5t-8t=6+2 | | 33=k-(-22) | | 1 = p2− 1 | | x^2/4+7x/2=-12 | | -7p+6+8p=13 | | 4+8n=-5(2n-8) | | 27x=88600000 | | 4(x+3)+4=9x-5(x-6) | | -551=19n | | 7z+z=48 | | 3y-23=8 | | 190=19n | | 21-(x+7)=7x-2 | | 5x/21-3=x/7+5 | | 4t−-2=18 | | -17-5(x+30=3x | | 5-x=-25+5x | | 2x+1/3=4/3 |